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ABSTRACT 

THEOREM. Let S be a bounded Saslin set in the plane. Then there is a bounded 
linear operator T in co, whose point spectrum tr, (T) = S. 

A similar theorem was obtained in [3], with an operator in a separable space 

depending on S, and then in [4] in a separable space E independent of S, but far 

from classical, even though the operator T is of an elementary kind. In co we use 

a similar operator in a certain subspace of co depending on S, then extend the 

operator to Co by Sobczyk's theorem ([6, 7]) and then adjust the point spectrum 

of the extension by a further extension to co + Co. An essential role is played by 

the 3-dimensional analogue of Wiener's theorem on Fourier-Stieltjes coeffi- 

cients (1924 [2, p. 42]), stated later as Lemma 1. 

I. A space of distributions 

rn 
Let Co] be the B-space of squences x = (Xo, x, . . . . .  x . . . . .  ) such that Eo Ix, ] = 

o(m),  with norm IIx II = sup(m § 1)-' Y~olX= I-Then Col is isomorphic to a sub- 
space of co, because each space l', can be embedded in q, by an operator A,  with 

IIA,xll<-_llxll<-_211A,xll (x E l',). 

Let Mc(T 3) be the space of continuous measures /z in T 3 and let (Nj~ be an 

enumeration of the 3-tuples (n,, n2, n3) E Z �9 Z �9 Z (the dual group of T3), 

with IINoll <--IIN, II--- " " .  Therefore No = 0 and 118 II aJ 3. We map the measure 
into co, by setting xj = /2(Nj)  for j =>0, using 

LEMUA 1. Let Iz be a continuous measure in T 3. Then 

- - r  ~ r  - - r  
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This is proved by evaluating the sum explicitly, as in [2, p. 42]. 

Let H/x be the element of col just defined; since the summable sequences are 

dense in Col, H(Mc(T3)) is dense in Cot. For each j = 0 , 1 , 2  . . . .  we have 

It2(Nj) I = < ( / +  1)ll n tz  II--< a(1 + II~ 113)lint z It 

so that Co~ can be identified with a linear space Y( of distribution of T 3. 

LEMMA 2. Let F ' E C S ( T  3) and /xGM~(T3). Then IIH(F.tz)II_ <- 

a IIFtIc'" l iNt II. 

PROOF. Let F = E ff'(N)xN, a sum of exponentials. Then 

I(F-/x)^ (M)[ ~ ~ I/2 (M - N)[[ F(N)I. 
N 

Let r > 0 ,  and let [(F-/~)^[ be summed over the set [tM[l<r. On this set 

I I M - N I I < I I N I I +  r, so  the sum can be estimated by 

a -  ~ (11N II Jr r § 1)31/'(N) I �9 II u s  II ~ a (1 + r) 3 E (1 + II N 11)31J0(N)I �9 II H/z II 

=< a(1 + r) 3, Irrllc~" IIU~ II, 

by Parseval's formula applied to the derivatives of F. (The degree of smoothness 

has no significance.) 

Henceforth the multiplication by C 5 functions is defined on all of Y(, and the 

support of an element /~ of ~ is denoted ~(/.~) (see [2, pp. 43-44; 1, w 

LEMMA 3. Let I.t ~ 0 in ~ ; the support of tz is a perfect set. 

PROOF. If E(/z) contains an isolated point t, then a certain product A = F. /~ ,  

with F E C s, would have support exactly {t}, and an obvious rotation reduces 

this to t = 0 .  

There must be a smooth function ft such that (A, f t ) ~ 0  but f t (0 )=0 .  

Otherwise (A, f)  --- cf(O), and A~ ~ unless c = 0. Clearly (ft" A, 1)= (A, / t )~ 0; 

continuing, we can find f2 . . . . .  f6 such that (ft �9 �9 �9 f6)" At ~ 0. But f t " "  f~ is a limit, 

in the metric of C 5, of smooth functions in the ideal J(0), by a theorem of 

Whitney ([8, p. 638]), so that ( f t ' "  f6)" A z= 0. 
For any closed set B C_ T 3, let ~f(B) be defined by E(/~) C B. Let F E C 5 and 

let TF be the multiplication by F:  TF~e(B)C ~(B) .  

LEMMA 4. The point spectrum of TF in ~r ) is precisely the set of z such that 
F-t(z ) f3 B is uncountable. 
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PROOF. Suppose that z is in the point spectrum, so that F . / z  = z/z for some 

/z # 0 in Yg(B). Then X(/z) C_ F-l(z) n B, and ]~(/z) is uncountable by Lemma 3. 

Conversely, if F-~(z) n B is uncountable, it supports a continuous measure/z  ; 

then /z E Y((B), and F . / z  = z/z because /z is an ordinary set-function. 

Let now B be a closed set in I tl [ < 1, It2 [ < 1, 0 < t3 < 1, and let F(t) = tl + ih. 
Then F can be extended to be a C a function of (tt, t2) of period 2rr, i.e. a n  

element of C=(T3). Identifying B with a subset of R3/21rZ 3, we can identify the 

point spectrum ~re of the operator TF in ~ ( B ) .  According to a theorem of 

Mazurkiewicz and Sierpifiski, tre is a Suslin set in the square Ix ] _- 1, ]y ] < 1, and 

any Suslin set S in the square is tr, for a certain closed set B. (The proof in [5] 

applies to any set S in a Hausdorff space X, which is the image f (N)  of the set of 

irrational numbers by a continuous mapping of N into X; the place of B is taken 

by a closed subset of X x [0, 1].) If S is merely bounded, but belongs to the 

square Ix[ < c, lyl < c, then S = O-e(cT), with an operator TF in Y~(B). 

Yg(B) is isomorphic to a subspace of Co, whence (Sobczyk's theorem [6], [7]) T 

admits an extension to an operator TtEL(co).  Now o-e(T1) appears to be 

intractable by this method, but this defect is removed in 

LEMMA 5. Let X be a separable Banach space, Y a closed subspace, and 
T~ E L (X). There is an operator T2 E L (X @ co) such that 

(i) T2 = T, in Y, 

(ii) all characteristic vectors of T2 belong to Y. 

Lemma 5 depends on 

LEMMA 6. In co there is an operator A and a subspace E = co, such that 
(iii) [] A ][ _-< 1 and A has no point spectrum, 

(iv) for all A, with [h ]< 1 

( h i  - A )co N E -- (0). 

To deduce Lemma 5 from this, choose a >I[T~II and let R E L ( X , E )  be 

defined so that R-'(0) -- Y. (This is trivial because X / Y  is separable and E has a 

basis). Now 

T2(x,z)=(T,x,  Rx + a A z )  ( x ~ X ,  zEco) .  

Assuming that T2(x, z) = (Ax, Az), we see at once from (iii) that x = 0 implies 

z = 0. When x # 0, then T, x = Ax forces I A [<- II T, II < a. 

But Rx = (AI - aA)z  whence by (iv), Rx = 0, so z = 0, x E Y. 

PROOF OF LEMMA 5. Let U be the unilateral shift U(tl, t2,t3,. . .)  = 
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(0, tt,t2,t3 . . . .  ) so that U - A I  is 1-1 in the space of all sequences. Then 

(U-M)z = ( 1 , 0  . . . .  ) can be solved only with A ~ 0 ,  but z is unbounded if 

I A I <  1. Since Co= Co@Co@'" ,  we can choose A = U @  U @ . . . ,  with an 
obvious definition of E. 

REFERENCES 

1. R. E. Edwards, Functional Analysis - -  Theory and Applications, Holt, Rinehart, New York, 
1976. 

2. Y. Katznelson, An Introduction to Harmonic Analysis (2nd edn.), Dover, New York, 1976. 
3. R. Kaufman, Lipschitz spaces and Suslin sets, J. Funct. Anal. 42 (1981), 271-273. 
4. R. Kaufman, Representation o[ Suslin sets by operators, to appear. 
5. S. Mazurkiewicz et W. Sierpifiski, Sur un probl~me concernant les [onctions continues, Fund. 

Math. 6 (1924), 161-169. Also: W. Sierpifiski, Oeuvres Choisies, T II, PWN, Warszawa, 1975, pp. 
559-566. 

6. A. Sobczyk, Projection o[the space (m) on its subspace (Co), Bull. Am. Math. Soc. 7 (1941), 
938-947. 

7. W. A. Veech, A shortproo[o[Sobczyk's theorem, Proc. Am. Math. Soc. 28 (1971), 627-628. 
8. H. Whitney, On ideals o[ differentiable [unctions, Am. J. Math. 70 (1948), 635-658. 


