ON SOME OPERATORS IN Co

BY

R. KAUFMAN *Department of Mathematics, University of Illinois, Urbana, IL 61801, USA*

ABSTRACT

THEOREM. *Let S be a bounded Saslin set in the plane. Then there is a bounded linear operator* T in c_0 , whose point spectrum $\sigma_r(T) = S$.

A similar theorem was obtained in [3], with an operator in a separable space depending on S, and then in [4] in a separable space E independent of S, but far from classical, even though the operator T is of an elementary kind. In c_0 we use a similar operator in a certain subspace of c_0 depending on S, then extend the operator to c_0 by Sobczyk's theorem ([6,7]) and then adjust the point spectrum of the extension by a further extension to $c_0 + c_0$. An essential role is played by the 3-dimensional analogue of Wiener's theorem on Fourier-Stieltjes coefficients (1924 [2, p. 42]), stated later as Lemma 1.

I. A space of distributions

Let c_{01} be the B-space of squences $x = (x_0, x_1, \ldots, x_n, \ldots)$ such that $\sum_{0}^{m} |x_n|$ $o(m)$, with norm $||x|| = \sup(m+1)^{-1} \sum_{0}^{m} |x_n|$. Then c_{01} is isomorphic to a subspace of c_0 , because each space l_n^1 can be embedded in c_0 by an operator A_n with

$$
||A_n x|| \leq ||x|| \leq 2||A_n x|| \qquad (x \in l_n^1).
$$

Let $M_c(T^3)$ be the space of continuous measures μ in T^3 and let $(N_i)_{\theta}^{\circ}$ be an enumeration of the 3-tuples $(n_1, n_2, n_3) \in Z \oplus Z \oplus Z$ (the dual group of T^3), with $||N_0|| \le ||N_1|| \le \cdots$. Therefore $N_0 = 0$ and $||N_i|| \approx a_i^3$. We map the measure μ into c_{01} by setting $x_i = \hat{\mu}(N_i)$ for $j \ge 0$, using

LEMMA 1. Let μ be a continuous measure in T^3 . Then

$$
\sum_{-r}^{r} \sum_{-r}^{r} \sum_{-r}^{r} |\hat{\mu}(n_1, n_2, n_3)|^2 = o(r^3), \qquad r \to +\infty.
$$

Received June 18, 1984

354 R. KAUFMAN Isr. J. Math.

This is proved by evaluating the sum explicitly, as in [2, p. 42].

Let $H\mu$ be the element of c_{01} just defined; since the summable sequences are dense in c_{01} , $H(M_c(T^3))$ is dense in c_{01} . For each $j = 0, 1, 2, ...$ we have

$$
|\hat{\mu}(N_i)| \leq (j+1) \| H\mu \| \leq a (1 + \| N_i \|^3) \| H\mu \|
$$

so that c_{01} can be identified with a linear space $\mathcal X$ of distribution of T^3 .

LEMMA 2. Let $F \in C^{5}(T^3)$ and $\mu \in M_c(T^3)$. Then $||H(F \cdot \mu)|| \leq$ $a \|F\|_{C^5} \cdot \|H\mu\|.$

PROOF. Let $F = \sum \hat{F}(N)\chi_N$, a sum of exponentials. Then

$$
|(F \cdot \mu)^{\wedge}(M)| \leq \sum_{N} |\hat{\mu}(M-N)| |\hat{F}(N)|.
$$

Let $r>0$, and let $|(F \cdot \mu)^{r}|$ be summed over the set $||M|| < r$. On this set $||M-N|| < ||N|| + r$, so the sum can be estimated by

$$
a \cdot \sum_{N} (\|N\| + r + 1)^{3} |\hat{F}(N)| \cdot \|H\mu\| \le a(1+r)^{3} \sum (1 + \|N\|)^{3} |\hat{F}(N)| \cdot \|H\mu\|
$$

$$
\le a(1+r)^{3} \cdot \|F\|_{C^{5}} \cdot \|H\mu\|,
$$

by Parseval's formula applied to the derivatives of F. (The degree of smoothness has no significance.)

Henceforth the multiplication by C^5 functions is defined on all of \mathcal{H} , and the support of an element μ of $\mathcal X$ is denoted $\Sigma(\mu)$ (see [2, pp. 43-44; 1, §5.6]).

LEMMA 3. Let $\mu \neq 0$ in \mathcal{H} ; the support of μ is a perfect set.

PROOF. If $\Sigma(\mu)$ contains an isolated point t, then a certain product $\lambda = F \cdot \mu$, with $F \in \mathcal{C}^5$, would have support exactly $\{t\}$, and an obvious rotation reduces this to $t=0$.

There must be a smooth function f_1 such that $\langle \lambda, f_1 \rangle \neq 0$ but $f_1(0)=0$. Otherwise $\langle \lambda, f \rangle \equiv cf(0)$, and $\lambda \not\in \mathcal{H}$ unless $c = 0$. Clearly $\langle f_1 \cdot \lambda, 1 \rangle = \langle \lambda, f_1 \rangle \neq 0$; continuing, we can find f_2, \ldots, f_6 such that $(f_1 \cdots f_6) \cdot \lambda_1 \neq 0$. But $f_1 \cdots f_6$ is a limit, *in the metric of* C^5 , of smooth functions in the ideal $J(0)$, by a theorem of Whitney ([8, p. 638]), so that $(f_1 \cdots f_6) \cdot \lambda_1 = 0$.

For any closed set $B \subseteq T^3$, let $\mathcal{H}(B)$ be defined by $\Sigma(\mu) \subseteq B$. Let $F \in C^5$ and let T_F be the multiplication by $F: T_F\mathcal{H}(B) \subseteq \mathcal{H}(B)$.

LEMMA 4. *The point spectrum of* T_F in $\mathcal{H}(B)$ is precisely the set of z such that $F^{-1}(z) \cap B$ is uncountable.

Vol. 50, 1985 **OPERATORS IN** c_0 355

PROOF. Suppose that z is in the point spectrum, so that $F \cdot \mu = z\mu$ for some $\mu \neq 0$ in $\mathcal{H}(B)$. Then $\Sigma(\mu) \subset F^{-1}(z) \cap B$, and $\Sigma(\mu)$ is uncountable by Lemma 3. Conversely, if $F^{-1}(z) \cap B$ is uncountable, it supports a continuous measure μ ; then $\mu \in \mathcal{H}(B)$, and $F \cdot \mu = z\mu$ because μ is an ordinary set-function.

Let now B be a closed set in $|t_1| \leq 1$, $|t_2| \leq 1$, $0 \leq t_3 \leq 1$, and let $F(t) = t_1 + it_2$. Then F can be extended to be a C^* function of (t_1, t_2) of period 2π , i.e. an element of $C^*(T^3)$. Identifying B with a subset of $R^3/2\pi Z^3$, we can identify the point spectrum σ_e of the operator T_F in $\mathcal{H}(B)$. According to a theorem of Mazurkiewicz and Sierpiński, σ_e is a Suslin set in the square $|x | \leq 1$, $|y | \leq 1$, and any Suslin set S in the square is σ_{ϵ} for a certain closed set B. (The proof in [5] applies to any set S in a Hausdorff space X, which is the image $f(N)$ of the set of irrational numbers by a continuous mapping of N into X; the place of B is taken by a closed subset of $X \times [0, 1]$.) If S is merely bounded, but belongs to the square $|x| \leq c$, $|y| \leq c$, then $S = \sigma_e(cT)$, with an operator T_F in $\mathcal{H}(B)$.

 $\mathcal{H}(B)$ is isomorphic to a subspace of c_0 , whence (Sobczyk's theorem [6], [7]) T admits an extension to an operator $T_1 \n\in L(c_0)$. Now $\sigma_e(T_1)$ appears to be intractable by this method, but this defect is removed in

LEMMA 5. *Let X be a separable Banach space, Y a closed subspace, and* $T_1 \in L(X)$. There is an operator $T_2 \in L(X \oplus c_0)$ such that

(ii) *all characteristic vectors of* $T₂$ *belong to Y.*

Lemma 5 depends on

LEMMA 6. In c_0 there is an operator A and a subspace $E \cong c_0$, such that (iii) $||A|| \le 1$ *and A has no point spectrum,* (iv) *for all* λ , *with* $|\lambda|$ < 1

$$
(\lambda I - A)c_0 \cap E = (0).
$$

To deduce Lemma 5 from this, choose $a > ||T_1||$ and let $R \in L(X, E)$ be defined so that $R^{-1}(0) = Y$. (This is trivial because X/Y is separable and E has a basis). Now

$$
T_2(x,z)=(T_1x,Rx+aAz) \qquad (x\in X,z\in c_0).
$$

Assuming that $T_2(x, z) = (\lambda x, \lambda z)$, we see at once from (iii) that $x = 0$ implies $z = 0$. When $x \neq 0$, then $T_1 x = \lambda x$ forces $|\lambda| \leq ||T_1|| < a$.

But $Rx = (\lambda I - aA)z$ whence by (iv), $Rx = 0$, so $z = 0$, $x \in Y$.

PROOF OF LEMMA 5. Let U be the unilateral shift $U(t_1, t_2, t_3,...)$ =

⁽i) $T_2 = T_1$ in Y,

356 R. KAUFMAN Isr. J. Math.

 $(0, t_1, t_2, t_3, \ldots)$ so that $U - \lambda I$ is 1-1 in the space of all sequences. Then $(U - \lambda I)z = (1, 0, ...)$ can be solved only with $\lambda \neq 0$, but z is unbounded if $|\lambda|$ < 1. Since $c_0 = c_0 \bigoplus c_0 \bigoplus \cdots$, we can choose $A = U \bigoplus U \bigoplus \cdots$, with an **obvious definition of E.**

REFERENCES

1. R. E. Edwards, *Functional Analysis — Theory and Applications*, Holt, Rinehart, New York, 1976.

2. Y. Katznelson, *An Introduction to Harmonic Analysis* (2nd edn.), Dover, New York, 1976.

3. R. Kaufman, *Lipschitz spaces and Suslin sets,* J. Funct. Anal. 42 (1981), 271-273.

4. R. Kaufman, *Representation of Suslin sets by operators*, to appear.

5. S. Mazurkiewicz et W. Sierpiński, *Sur un problème concernant les fonctions continues*, Fund. Math. 6 (1924), 161-169. Also: W. Sierpifiski, *Oeuvres Choisies,* T II, PWN, Warszawa, 1975, pp. 559-566.

6. A. Sobczyk, *Projection of the space (m) on its subspace* (c_0) , Bull. Am. Math. Soc. 7 (1941), 938-947.

7. W. A. Veech, A short proof of Sobczyk's theorem, Proc. Am. Math. Soc. 28 (1971), 627-628.

8. H. Whitney, *On ideals o[differentiable [unctions,* Am. J. Math. 70 (1948), 635-658.